Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis
نویسندگان
چکیده
Clathrin-mediated endocytosis (CME) involves the recruitment of numerous proteins to sites on the plasma membrane with prescribed timing to mediate specific stages of the process. However, how choreographed recruitment and function of specific proteins during CME is achieved remains unclear. Using genome editing to express fluorescent fusion proteins at native levels and live-cell imaging with single-molecule sensitivity, we explored dynamin2 stoichiometry, dynamics, and functional interdependency with actin. Our quantitative analyses revealed heterogeneity in the timing of the early phase of CME, with transient recruitment of 2-4 molecules of dynamin2. In contrast, considerable regularity characterized the final 20 s of CME, during which ∼26 molecules of dynamin2, sufficient to make one ring around the vesicle neck, were typically recruited. Actin assembly generally preceded dynamin2 recruitment during the late phases of CME, and promoted dynamin recruitment. Collectively, our results demonstrate precise temporal and quantitative regulation of the dynamin2 recruitment influenced by actin polymerization.
منابع مشابه
Real-time analysis of clathrin-mediated endocytosis during cell migration.
Simultaneous dual-color total-internal-reflection fluorescence microscopy (TIR-FM) was performed to analyze the internalization and distribution of markers for clathrin-mediated endocytosis (clathrin, dynamin1, dynamin2 and transferrin) in migrating cells. In MDCK cells, which endogenously express dynamin2, the dynamin2-EGFP fluorescence demonstrated identical spatial and temporal behavior as c...
متن کاملDynamics of Dynamin during Clathrin Mediated Endocytosis in PC12 Cells
BACKGROUND Members of the dynamin super-family of GTPases are involved in disparate cellular pathways. Dynamin1 and dynamin2 have been implicated in clathrin-mediated endocytosis. While some models suggest that dynamin functions specifically at the point of vesicle fission, evidence also exists for a role prior to fission during vesicle formation and it is unknown if there is a role for dynamin...
متن کاملA dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis.
Clathrin-mediated endocytosis in mammalian cells is critical for a variety of cellular processes including nutrient uptake and cell surface receptor down-regulation. Despite the findings that numerous endocytic accessory proteins directly or indirectly regulate actin dynamics and that actin assembly is spatially and temporally coordinated with endocytosis, direct functional evidence for a role ...
متن کاملEndocytosis in its natural state
Har vesting a new KASH crop Z hou et al. reveal that plants express diverse KASH-like proteins that perform discrete functions at the outer nuclear membrane. In animals and fungi, LINC complexes—composed of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins— connect the nucleus to the cytoskeleton to control a variety of processes including nuclear positioning and chro...
متن کاملRegulation of Hip1r by epsin controls the temporal and spatial coupling of actin filaments to clathrin-coated pits.
Recently, it has become clear that the actin cytoskeleton is involved in clathrin-mediated endocytosis. During clathrin-mediated endocytosis, clathrin triskelions and adaptor proteins assemble into lattices, forming clathrin-coated pits. These coated pits invaginate and detach from the membrane, a process that requires dynamic actin polymerization. We found an unexpected role for the clathrin a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 205 شماره
صفحات -
تاریخ انتشار 2014